skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tolley, Krystal A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although genome-scale data generation is becoming more tractable for phylogenetics, there are large quantities of single gene fragment data in public repositories and such data are still being generated. We therefore investigated whether single mitochondrial genes are suitable proxies for phylogenetic reconstruction as compared to the application of full mitogenomes. With near complete taxon sampling for the southern African dwarf chameleons (Bradypodion), we estimated and compared phylogenies for the complete mitogenome with topologies generated from individual mitochondrial genes and various combinations of these genes. Our results show that the topologies produced by single genes (ND2,ND4,ND5,COI, andCOIII) were analogous to the complete mitogenome, suggesting that these genes may be reliable markers for generating mitochondrial phylogenies in lieu of generating entire mitogenomes. In contrast, the short fragment of16Scommonly used in herpetological systematics, produced a topology quite dissimilar to the complete mitogenome and its concatenation withND2weakened the resolution ofND2. We therefore recommend the avoidance of this16Sfragment in future phylogenetic work. 
    more » « less
  2. Fraser, Bonnie (Ed.)
    Abstract A complete and high-quality reference genome has become a fundamental tool for the study of functional, comparative, and evolutionary genomics. However, efforts to produce high-quality genomes for African taxa are lagging given the limited access to sufficient resources and technologies. The southern African dwarf chameleons (Bradypodion) are a relatively young lineage, with a large body of evidence demonstrating the highly adaptive capacity of these lizards. Bradypodion are known for their habitat specialization, with evidence of convergent phenotypes across the phylogeny. However, the underlying genetic architecture of these phenotypes remains unknown for Bradypodion, and without adequate genomic resources, many evolutionary questions cannot be answered. We present de novo assembled whole genomes for Bradypodion pumilum and Bradypodion ventrale, using Pacific Biosciences long-read sequencing data. BUSCO analysis revealed that 96.36% of single copy orthologs were present in the B. pumilum genome and 94% in B. ventrale. Moreover, these genomes boast scaffold N50 of 389.6 and 374.9 Mb, respectively. Based on a whole genome alignment of both Bradypodion genomes, B. pumilum is highly syntenic with B. ventrale. Furthermore, Bradypodion is also syntenic with Anolis lizards, despite the divergence between these lineages estimated to be nearly 170 Ma. Coalescent analysis of the genomic data also suggests that historical changes in effective population size for these species correspond to notable shifts in the southern African environment. These high-quality Bradypodion genome assemblies will support future research on the evolutionary history, diversification, and genetic underpinnings of adaptation in Bradypodion. 
    more » « less
  3. Lenoir, Jonathan (Ed.)
    Abstract AimSquamate fitness is affected by body temperature, which in turn is influenced by environmental temperatures and, in many species, by exposure to solar radiation. The biophysical drivers of body temperature have been widely studied, but we lack an integrative synthesis of actual body temperatures experienced in the field, and their relationships to environmental temperatures, across phylogeny, behaviour and climate. LocationGlobal (25 countries on six continents). TaxaSquamates (210 species, representing 25 families). MethodsWe measured the body temperatures of 20,231 individuals of squamates in the field while they were active. We examined how body temperatures vary with substrate and air temperatures across taxa, climates and behaviours (basking and diel activity). ResultsHeliothermic lizards had the highest body temperatures. Their body temperatures were the most weakly correlated with substrate and air temperatures. Body temperatures of non‐heliothermic diurnal lizards were similar to heliotherms in relation to air temperature, but similar to nocturnal species in relation to substrate temperatures. The correlation of body temperature with air and substrate temperatures was stronger in diurnal snakes and non‐heliothermic lizards than in heliotherms. Body‐substrate and body‐air temperature correlations varied with mean annual temperatures in all diurnal squamates, especially in heliotherms. Thermal relations vary with behaviour (heliothermy, nocturnality) in cold climates but converge towards the same relation in warm climates. Non‐heliotherms and nocturnal species body temperatures are better explained by substrate temperature than by air temperature. Body temperature distributions become left‐skewed in warmer‐bodied species, especially in colder climates. Main ConclusionsSquamate body temperatures, their frequency distributions and their relation to environmental temperature, are globally influenced by behavioural and climatic factors. For all temperatures and climates, heliothermic species' body temperatures are consistently higher and more stable than in other species, but in regions with warmer climate these differences become less pronounced. A comparable variation was found in non‐heliotherms, but in not nocturnal species whose body temperatures were similar to air and substrate irrespective of the macroclimatic context. 
    more » « less
  4. Abstract Comprehensive assessments of species’ extinction risks have documented the extinction crisis 1 and underpinned strategies for reducing those risks 2 . Global assessments reveal that, among tetrapods, 40.7% of amphibians, 25.4% of mammals and 13.6% of birds are threatened with extinction 3 . Because global assessments have been lacking, reptiles have been omitted from conservation-prioritization analyses that encompass other tetrapods 4–7 . Reptiles are unusually diverse in arid regions, suggesting that they may have different conservation needs 6 . Here we provide a comprehensive extinction-risk assessment of reptiles and show that at least 1,829 out of 10,196 species (21.1%) are threatened—confirming a previous extrapolation 8 and representing 15.6 billion years of phylogenetic diversity. Reptiles are threatened by the same major factors that threaten other tetrapods—agriculture, logging, urban development and invasive species—although the threat posed by climate change remains uncertain. Reptiles inhabiting forests, where these threats are strongest, are more threatened than those in arid habitats, contrary to our prediction. Birds, mammals and amphibians are unexpectedly good surrogates for the conservation of reptiles, although threatened reptiles with the smallest ranges tend to be isolated from other threatened tetrapods. Although some reptiles—including most species of crocodiles and turtles—require urgent, targeted action to prevent extinctions, efforts to protect other tetrapods, such as habitat preservation and control of trade and invasive species, will probably also benefit many reptiles. 
    more » « less